Fast Synchronization of Random Automata

JCB 2020

Cyril Nicaud

LIGM – Univ Gustave Eiffel & CNRS

February 2020
Does the Černý conjecture hold with high probability?
Topic of the talk

Does the Černý conjecture hold with high probability?

The Černý conjecture (1964)

A synchronizing automaton with \(n \) states admits a synchronizing word of length at most \((n - 1)^2 \).
1. Automata & Synchronization
A (complete and deterministic) **automaton** is a directed graph s.t.:

- **vertices** are called **“states”**, and **edges** are called **“transitions”**
- For each state and for each letter **a** of a fixed alphabet **A**, there is exactly one outgoing transition labeled by **a**
Synchronizing automata

- An automaton is **synchronizing** when there exists a word that brings every state to one and the same state.
- Such a word is a **synchronizing word**

Diagram:

- $aaaa$ is a synchronizing word
- aba is a **smaller** synchronizing word
Synchronizing automata

- An automaton is **synchronizing** when there exists a word that brings every state to one and the same state.
- Such a word is a **synchronizing word**

This automaton is **not synchronizing**.
Pairwise Synchronization

- A pair of states \((p,q)\) is synchronized when there exists a word \(u\) such that \(p \cdot u = q \cdot u\).

Lemma

If every pair of states is synchronized, then the automaton is synchronizing.

More precisely, is every pair is synchronized by a word of length at most \(\ell\), then the automaton is synchronized by a word of length at most \(n(\ell - 1)\).
Checking Synchronization: Square of an Automaton

[Diagram of an automaton with states and transitions labeled with symbols a and b]
Synchronizing iff there is a path from every \((p, q)\) to a state \((x, x)\)

- Checked in \(O(n^2)\)
- Using the lemma: synchronizing word of length at most \(n^3\)
The Černý conjecture

A synchronizing automaton with n states admits a synchronizing word of length at most $(n - 1)^2$.

- $(n - 1)^2$ is best possible
- n^3 is trivial
- First (general) known bound [Frankl] [Pin 83]: $\frac{1}{6}(n^3 - n)$.
- The conjecture holds for many families of automata
- [Szykuła 18] improve the coefficient of n^3 to $\frac{114}{685} = \frac{1}{6} - \frac{1}{4110}$
2. Settings
Deterministic and complete automata

A (complete and deterministic) automaton is a directed graph s.t.:

- vertices are called “states”, and edges are called “transitions”
- For each state and for each letter a of a fixed alphabet A, there is exactly one outgoing transition labeled by a
Random deterministic automata: some models

There are three main probabilistic models:

- **Uniform deterministic and complete automata**: the target of each transition is chosen uniformly at random, independently
- **Uniform accessible** deterministic and complete automata
- **Uniform minimal** automata

For these models, we can instead consider that each state is **final** with some fixed probability $p \in (0, 1)$, independently.

In this talk: our model is the first one, the simplest.
Random automata vs random digraphs

For $A = \{a, b\}$.

- **Random automata**: each state has 2 outgoing transitions
- **Random digraph (Erdős-Rényi)**: each edge has probability $\frac{2}{n}$
- Let θ be the unique positive real solution of $1 - x = e^{-2x}$ ($\theta \approx 0.79$)

Random automaton

strongly connected

79% 21%

Random digraph [Karp 90]

strongly connected

63% 16% 21%
Probabilistic Černý conjecture

Question 1

What is the probability that an automaton is synchronizing?

Question 2

Does the Černý conjecture hold with high probability?
Experiments [Kisielewicz, Kowalski and Szykuła 13]

The graphic comes from [Kisielewicz, Kowalski and Szykuła 13]
Answer to Q1: Berlinkov’s theorem

Theorem [Berlinkov’16]

For alphabets with at least two letters, deterministic automata are **synchronizing with high probability**.

More precisely, a random automaton is **not synchronizing** with probability $O\left(\frac{1}{n^{k/2}}\right)$.

For $k = 2$, the bound is **tight**: $\Theta\left(\frac{1}{n}\right)$.
An answer to Q2: this talk

Theorem [N. RANDOM’16]

For alphabets with at least two letters, a random automaton admits a synchronizing word of length at most $O(n \log^3 n)$ with high probability.

- The proof is independent of Berlinkov’s proof
- It is more elementary
- The error term is not tight
- It provides information on the reset threshold

Corollary

For alphabets with at least two letters, the Černý conjecture holds with high probability.
An algebraic version

- in an automaton, the **action** of each letter \(a \) on the set of states is a mapping \(\delta_a \)
- we are interested in the **monoid** generated by the \(\delta_a \)'s
An algebraic version

- in an automaton, the action of each letter a on the set of states is a mapping δ_a
- we are interested in the monoid generated by the δ_a's

Theorem (Dixon 69)

Let σ and τ be two uniform random permutations of size n. With high probability, the group generated by σ and τ is either the symmetric group or the alternating group.
An algebraic version

- in an automaton, the action of each letter a on the set of states is a mapping δ_a
- we are interested in the monoid generated by the δ_a’s

Theorem (Dixon 69)

Let σ and τ be two uniform random permutations of size n. With high probability, the group generated by σ and τ is either the symmetric group or the alternating group.

- An automaton is synchronized \iff the monoid contains a constant map
3. Proof sketch
We consider **uniform random mapping** from \([n]\) to itself.

- Its functional graph is a set of cycles of trees.
- The mapping below has **height 3**, and it has **6 cyclic points**.

A tuple of uniform random mappings defines a **uniform random automaton** (one mapping for the action of each letter).
A property of random p-mappings

Lemma

With high probability, a uniform random mapping has **height** at most $2\sqrt{n \log n}$ and has at most $2\sqrt{n \log n}$ cyclic points. It still holds for p-random mappings.

Proof: Birthday paradox.

random p-mapping: the image of each element is taken independently in $[n]$, following the probability distribution p.
First step: \textit{a}-transitions

Main idea:

- Start from an automaton with no transitions
- Add random transitions as needed

First, we add all the \textit{a}-transitions
First step: \(a\)-transitions

- **Main idea:**
 - Start from an automaton with **no transitions**
 - **Add** random transitions as needed

- First, we add all the \(a\)-transitions
Shrinking to \(a\)-cyclic points

\(\mathcal{C}_a \) is the set of \(a\)-cyclic points

\(\text{W.h.p., } |\mathcal{C}_a| \leq 2\sqrt{n \log n} \) and \(u = a^2 \sqrt{n \log n} \) maps \([n]\) to \(\mathcal{C}_a\)
Shrinking C_a

- We fix the a-transitions
- We now generate b-transitions starting from the states of C_a

We consider the map $\delta_v : C_a \to C_a$ defined with $v = bu$

$$\Pr(f(p) = q) = \frac{\text{number of preimages of } q \text{ by } u}{n}$$
Shrinking C_a

- δ_v is a random p-mapping on C_a
- Let $w = v^{\beta_n}$, with $\beta_n = 3n^{1/4}(\log n)^{3/4}$
- W.h.p $|C_w| \leq \beta_n$ and δ_w maps C_a to C_w

![Diagram showing the mapping process](image_url)
Shrinking once more

- Using a third letter \(c \), we can do the same trick once again.
- If \(A = \{a, b\} \), with some care, we can use \(c = bb \).

W.h.p. the word \(s = uwvx \) has length at most \(n^{7/8} \log^3 n \) and maps the set of states to a set \(C \) of size \(\tilde{O}(n^{1/8}) \).
Synchronizing \mathcal{C}

- We synchronize every pair (p, q) of states of \mathcal{C}
- Repeatedly draw d-transitions starting from p and q:

$\begin{align*}
 p & \rightarrow p_2 \rightarrow p_3 \rightarrow \cdots \rightarrow p_i \\
 q & \rightarrow q_2 \rightarrow q_3 \rightarrow \cdots \rightarrow q_i
\end{align*}$

- if $\delta_s(p_i) = \delta_s(q_i)$ the synchronization is a success
- if p_i or q_i already have a d-transition or if the sequence is too long, it is a failure
- Proposition: w.h.p. this synchronization process is a success for every pair of states of \mathcal{C}.
Proof sketch

- Shrink the set of states three times to a set C of size $\approx n^{1/8}$
- Synchronize pairs of states of C using words of the form $d^i \cdot s$
- (technical) adapt the proof to alphabets with two letters

Theorem (N. 16)

For alphabets with at least two letters, a random automaton admits a synchronizing word of length at most $O(n \log^3 n)$ with high probability.
Further directions

- The expected reset threshold in $\Theta(\sqrt{n})$
- The error term in $\Theta(1/n)$
- Proof of the Černý conjecture ...
Thanks!